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Abstract 
A common problem in many areas of water resources engineering is that of analyzing 
hydrological and meteorological events for planning and design projects. For these 
purposes, information is required on rainfall events, flow depths, discharges, 
evapotranspiration levels, etc. that can be expected for a selected probability or return 
period.  In the paper the software tool RAINBOW is presented which is designed to study 
meteorological or hydrologic records by means of a frequency analysis and to test the 
homogeneity of the record. After the selection or creation of a data set, an analysis on the 
data is performed. When opting for a frequency analysis, a menu is opened which 
contains various folders where a probability distribution can be selected, the data 
transformed, and results can be viewed or saved on disk. In RAINBOW the user can 
select a Normal, Log-Normal, Weibul, Gamma, Gumbel, Exponential or Pareto 
distribution. Apart from graphical methods (Probability plot and a Histogram of the data 
superimposed by the selected probability function) for evaluating the goodness of fit, 
RAINBOW offers also statistical tests for investigating whether data follow a certain 
distribution (Chi-square and the Kolmogorov-Smirnov test). When the goodness-of-fit is 
inadequate, one can either select another distribution or attempt to normalize the data by 
selecting a mathematical operator to transform the data. RAINBOW allows also to 
analyse time-series with zero or near zero events (the so called nil values) by separating 
temporarily the nil values from the non-nil values. By calculating the global probability, 
the nil and no-nil rainfall are combined again. When the probability distribution can be 
accepted, the user can view the calculated events that can be expected for selected 
probabilities or return periods. Frequency analysis of data requires that the data be 
homogeneous and independent. The restriction of homogeneity assures that the 
observations are from the same population. RAINBOW offers a test of homogeneity 
which is based on the cumulative deviations from the mean. By evaluating the maximum 
and the range of the cumulative deviations from the mean, the homogeneity of the data of 
a time series is tested. 
 
The RAINBOW software itself is easy to install and use. It is menu driven and no 
specific computer knowledge is required. The software is freely available on the web. To 
DOWNLOAD go to http://www.iupware.be and select downloads and next software.  



Introduction 
The paper presents the software package RAINBOW with which magnitudes for events 
can be estimated that can be expected for a selected probability or return period. Such 
estimates can be obtained by means of a frequency analysis on historical data. Depending 
on the objective of the exercise, the type of data to be analysed can vary widely from one 
application to another. For hydrologic purposes, typically historical time series of 
meteorological and hydrological data are analysed to determine design rainfall depths, 
evapotranspiration levels, floods, etc that can occur with a selected probability. These 
estimates are required for the design of canals, pipelines, reservoirs, floodwater-spreading 
systems and hydraulic structures and for the proper management of floodwater and 
rainwater harvesting schemes, and irrigation and drainage projects. The selection of the 
probability or return period for design purposes is related to the damage the excess or the 
shortage of rainfall may cause, the risk one wants to accept and the lifetime of the project.  
 

 
 

Figure 1. Total annual rainfall recorded in Tunis (Tunisia) for the period 1930-1990 
with indication of the average rainfall (horizontal line). 

 
 
To demonstrate the software, examples are worked out on time series of rainfall data 
extracted from the FAOCLIM databank (FAO, 2000). The total rainfall received in a 
given period at a particular location is highly variable from one year to another (Fig. 1). 
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The variability depends on the type of climate and the length of the considered period. 
Although time series of historic rainfall data are characterized by their average and 
standard variation, these values cannot be blindly used to estimate based on a normal 
distribution design rainfall depths that can be expected with a specific probability or 
return period. Applying this technique to a data set can produce misleading results since 
the actual characteristics of the distribution are ignored and it is assumed that they follow 
a particular distribution. To avoid this type of error, it is essential that the goodness of the 
assumed distribution be checked before design rainfall depths are estimated.  
 
In a frequency analysis (Snedecor and Cochran 1980; WMO, 1981, 1983 and 1990; 
Haan, 2002) estimates of the probability of occurrence of future rainfall events are based 
on the analysis of historical rainfall records. By assuming that the past and future data 
sets are stationary and have no apparent trend one may expect that future time series will 
reveal frequency distributions similar to the observed one. It is obvious that the longer the 
data series the more similar the frequency distribution will be to the probability 
distribution. As the number of observations increases, the error in determining expected 
rainfall gradually diminishes. Although the required length of the time series depends on 
the magnitude of variability of the precipitation climate, a period of 30 years and over 
normally is thought to be very satisfactory. However, if interest lies in extreme rainfall 
events, larger number of years may be required.  
 
Frequency analysis requires considerable computations and careful plotting. Efficiency 
can be gained by using software such as RAINBOW. This software has been specially 
designed to carry out frequency analyses and to test the homogeneity of data sets. 
 
 
Structure of the RAINBOW program 
The hierarchical structure of the RAINBOW program is presented in Figure 2. From the 
Main Menu, the user has access to the data and can perform an analysis. An analysis 
starts with the selection or creation of a data file. A rainfall data file contains typically 
historical observations of 10-daily, monthly, seasonal or yearly rainfall over a sufficient 
number of years.  In stead of creating files when running RAINBOW, the user can also 
copy the available data from for example a spreadsheet and paste them in a data file as 
long as the user respects the structure and extension of the files. Data files are stored by 
default in the DATA subdirectory of the program, but with the help of the ‘Path’ button, 
files stored in other directories or drives can be accessed. 
 
Once the data file is selected, an analysis on the data can be performed by selecting the 
‘Homogeneity test’ or ‘Frequency analysis’. After the analysis, one returns to the Main 
menu to select other data files or perform other tests on the same data file.  
 
 
 
 



 
 

Figure 2. Structure of the RAINBOW program 
 
 
Frequency analysis 
When opting for a frequency analysis in the Main menu, the user is guided to the 
‘Frequency analysis’ menu (Fig. 3) which contains various folders where the probability 
distribution can be selected, the data transformed, and results can be viewed or saved on 
disk. In the menu, the user can also setup options for assigning plotting positions and for 
estimating statistical parameters which are required when analysing the data.  
 
From a frequency analysis, the estimates of rainfall depths for selected probabilities or 
return periods are obtained. The analysis consists in: 
- ranking the historical data and assigning plotting positions by estimating the 

probability of exceedance with one or another method (Table 1); 
- selecting a distributional assumption and plotting the data in a probability plot; 
- verifying the goodness of the selected distribution. If unsatisfactory another 

distribution should be selected or the data should be transformed so that the 
transformed data follow the selected distribution; 

- determining rainfall depths that can be expected for selected probabilities or return 
period from the probability plot. 

 



 

 
 
Figure 3. The frequency analysis menu with the various folders where the user can 

select options and view results. 
 
 
Ranking data and assigning plotting positions: 
The program ranks the historical data in descending order and assigns a serial rank 
number (r) ranging from 1 to n (number of observations) to the ranked data. Subsequently 
the probability of exceedance for each observation is estimated by one or another method. 
These probabilities will be the plotting positions for the ranked observations in the 
probability plot (Fig 4). Although the results will not differ profoundly from one to each 
other, RAINBOW allows the user to select a particular method (Tab. 1). The Weibull 
plotting position is the default setting. 
 
 
Selecting a distributional assumption and plotting the data in a probability plot: 
When selecting a distributional assumption, a frequency histogram superimposed by 
(corresponding scaled version of) the probability density function (Fig. 6) and probability 
plot (Fig. 4) are drawn in the corresponding folders. In RAINBOW the user can select a 
Normal (Haan, 2002), Log-Normal (Aitchison and Brown, 1957; Crow and Shimizu, 
1988; Evans et al. 1993), Weibul (Haan, 2002), Gamma (Thom, 1951; Markovic, 1965; 
Mooley, 1973; Aksoy, 2000), Gumbel (Gumbel, 1958), Exponential (Haan, 2002) or 
Pareto (Norman et al., 1994) distribution  
 



Table 1. Methods for estimating probabilities of exceedance (plotting positions) of 
ranked data, where r is the rank number and n the number of observations (Raes et 
al., 1996; Gbaguidi, 2005). 
Method and (Source) Estimate of probability of 

exceedance (%) 
California 

(California State Department, 1923) n
r  100 

Hazen 

(Hazen, 1930) n
r )5.0( −  100 

Weibull 

(Weibul, 1939) )1( +n
r  100 

Cunnane 

Cunnane (1978) 
( )
( )100

2.0
4.0

+
−
n
r  

Gringorten 

(WMO, 1983) )12.0(
)44.0(

+
−
n
r  100 

Sevruk and Geiger 

(Sevruk and Geiger, 1981) 
( )
( ) 100

4/1
8/3

+
−
n
r  

Adamowski 

(Adamowski, 1981) 
( )
( ) 100

5.0
26.0

+
−
n
r  

 
A probability plot (Fig. 4) is a plot of the rainfall depths versus their probabilities of 
exceedance as determined by one or another method (Tab. 1). When the data are plotted 
in a graph where both axes have a linear scale, the data are not likely to be on a straight 
line but to follow a S-shaped curve. By selecting a probability distribution, the vertical 
axis of the probability plot is rescaled so that the data will fall on a straight line if it is 
distributed as selected (Fig. 5). On probability paper the cumulative distribution of the 
total population will fall on that straight line. This makes the verification of the goodness 
of selected distribution easier. Figure 5 refers to a normal distribution, but the same is 
true for other distributions. Only the rescaling of the vertical axis will be different. 
 
In the plot of the frequency histogram (Fig. 6), RAINBOW constructs a frequency 
histogram of the observed data and superimposes it with the selected probability density 
function (after rescaling it to represent frequencies). The class interval is selected by the 
program as such that at least five observations belong to one class. 
 
 
 



 
 

Figure 4. Probability plot for the annual rainfall (1960 – 1996) in Bombay (Normal 
distribution). 

 

 
 

Figure 6. Histogram superimposed by the probability density function for the 
annual rainfall (1960 – 1996) in Bombay (Normal distribution). 

 



 

 
rescale probability axis by selecting a probability distribution 

 

 
Figure 5. Effect of the rescaling of the vertical axis of a probability plot  
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Statistical parameters, describing the characteristics of the data set, are required in the 
frequency analysis. The parameters are the mean and standard deviation (Normal and 
Lognormal distribution), the shape and scale parameters (Gamma and Weibull 
distribution) or the one parameter for the Exponential (λ) and Pareto distribution (α). 
RAINBOW offers different options for parameter estimation: the Method of Moment 
(Atwood et al., 2003), the Maximum Likelihood Method (Law and Kelton, 1991) and the 
Regression Method. For most distributions the estimated parameters will vary somewhat 
with the selected method. The most commonly used method is the Maximum Likelihood 
Method that Law and Kelton (1991) qualified as the preferred method of parameter 
estimation for distribution fitting. When selecting the Regression Method, the mean and 
standard deviation of the data set are obtained from the best fitted line through the data in 
the probability plot (Normal and Lognormal distribution). 
 

 
 

Figure 7. Result from statistical tests evaluating the goodness of fit for the Normal 
distribution of the annual rainfall (1960 – 1996) of Bombay. 

 
Verifying the goodness of the selected distribution: 
If the data in a probability plot (Fig. 4) fall in a reasonable alignment, it may be assumed 
that the data can be approximated by the assumed distribution. Since the data is only a 
sample of the total population it would be rare for a set of data to plot exactly on a line 
and a decision must be made as to whether or not the deviations from the line are random 
variations or represent true deviations indicating that the data does not follow the given 
probability distribution. By fitting a line through the points an indication of the goodness 
of fit is given by the coefficient of determination (R2) of the fitted line. Owing to 
sampling variations, the points will depart somewhat from the line even with data that 
follow perfectly the assumed distribution. When the points in the probability plot do not 
fall in a reasonable alignment, the data is most likely not distributed as the selected 
distribution especially if the points deviate from the straight line in some systematic 
matter.  



Apart from graphical methods (Probability plot and Histogram) for evaluating the 
goodness of fit, RAINBOW offers also statistical tests (Haktanir and Holacher, 1993; 
Kottegoda, 1980) for investigating whether data follows a certain distribution (Fig. 7). 
The null hypothesis (H0) is that the data comes from a distribution of the assumed form. 
The Chi-square test (Snedecor and Cochan, 1980) is based on the probability density 
function (Fig. 6). The smaller the value of the χ2 statistics, the better the expected model 
fit to the sample at hand (Topaloglu, 2000). The χ2 finds evidence against the null 
hypothesis in terms of a probability (P-value of the test). The smaller the P-value the 
stronger the evidence against H0. RAINBOW tests with significance levels of α = 0.20, 
0.10 and 0.05. The Kolmogorov-Smirnov test (Topaloglu, 2000) is based on the 
cumulative density function (Fig. 4). The statistic used is the greatest absolute difference 
between the cumulative density function for the data and the fitted distribution. The 
difference is compared with critical values selected according to the significance levels of 
α = 0.20, 0.10 and 0.05. If the difference is smaller than the critical value the assumed 
probability distribution is accepted with that level of significance. 
 
Transformation of the data 
When the goodness-of-fit is inadequate, one can either select another distribution or 
attempt to normalize the data by selecting a mathematical operator to transform the data 
(Raes et al., 1996). Since dealing with a normal distribution has several practical 
advantages, it is common practice to transform data that are not normally distributed so 
that the resulting normalized data can be presented by the normal curve. The 
transformation of the data will change the scale of the records (i.e. the abscissa of the 
probability plot). 
 
For positively skewed data a transformation can be used to reduce higher values by 
proportionally greater amounts than smaller values. This transformation will rescale the 
magnitude of the records and the transformed data might be closer to the normal 
distribution than the original data (Fig. 8). Operators available in RAINBOW to rescale 
the data are the square root (resulting in a fairly moderate transformation), the cube root 
and the logarithm (resulting in a substantive transformation). 
 
Data sets with zero rainfall 
For months at the onset or cessation of the rainy season, or for small periods such as 
weeks or 10-day periods, rainfall data might be zero or near zero in some of the years. As 
such the rainfall data is bounded on the left by zero or near zero values. If the occurrence 
of low rainfall is high, the frequency distribution becomes severely skewed. A method to 
analyse time-series with zero or near zero rainfall (the so called nil values) is to separate 
temporarily the nil values from the non-nil values. RAINBOW allows the specification of 
a nil value different from zero. By excluding the nil’s from the frequency analysis, the 
frequency distribution becomes less skewed to the left, and the data can be analysed. By 
calculating the global probability, the nil and no-nil rainfall are combined. This type of 
mixed distribution with a finite probability that X = nil and a continuous distribution of 
probability for X > nil is discussed by Haan (2002). 
 
 



 
 
 

rescale horizontal axis by transforming data 

 
Figure 8. Transformation of positively skewed rainfall data. 
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Figure 9. Tabular results of the frequency analysis on the annual rainfall (1960 – 
1996) of Bombay. 

 
Determining rainfall depths that can be expected for selected probabilities or return 
periods  
When the probability distribution can be accepted, the user can find the rainfall depths 
(XP) that can be expected for selected probabilities in a Table (Fig. 9). The probability 
refers to the probability of exceedance and it specifies the likelihood that the actual 
rainfall will be equal to or higher than the estimated rainfall depth XP. The return period 
(also called the recurrence interval) is the average time between successive years where 
the value of XP is exceeded. It is the reciprocal value of the probability when expressed as 
a fraction. 
 
Homogeneity test of time series 
Frequency analysis of data requires that the data be homogeneous and independent. The 
restriction of homogeneity assures that the observations are from the same population. 
One of the tests of homogeneity (Buishand, 1982) is based on the cumulative deviations 
from the mean: 
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where Xi are the records from the series X1, X2, …, Xn and X  the mean. The initial value 
of Sk=0 and last value Sk=n are equal to zero (Figure 10). When plotting the Sk’s (also 
called a residual mass curve) changes in the mean are easily detected. For a record Xi 
above normal the Sk=i increases, while for a record below normal Sk=i decreases. For a 



homogenous record one may expect that the Sk’s fluctuate around zero since there is no 
systematic pattern in the deviations of the Xi’s from their average value X .  
 

 
 

Figure 10. Rescaled cumulative deviations from the mean  
for the total annual rainfall (1960 – 1996) for Bombay.  

When the deviation crosses one of the horizontal lines the homogeneity of the data 
set is rejected with respectively 90, 95 and 99% probability. 

 
To test the homogeneity of the data set, RAINBOW rescales the cumulative deviations by 
dividing the Sk’s by the sample standard deviation value. By evaluating the maximum (Q) 
and the range (R) of the rescaled cumulative deviations from the mean, the homogeneity 
of the data of a time series can be tested. High values of Q or R are an indication that the 
data of the time series is not from the same population and that the fluctuations are not 
purely random. Critical values for the test-statistic which test the significance of the 
departures from homogeneity are plotted as well (Fig. 10). 
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